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The one-dimensional motion of an ideal gas is considered under the action of a distri- 

buted pressure, specified according to a power law as a function of mass p = porn-Z, 
where z > 0. Problems concerning dispersion and symmetrical motion are studied. These 

problems are formally self-similar for any exponent 1. However, when I > 1 , the sys- 
tem of ordinary differential equations obtained has no solution which satisfies the given 
boundary conditions. This is due to the fact that in this case,in the vicinity of the point 

m = 0 , infinite energy is concentrated. If it be assumed finite by changing the normal 

pressure distribution in the vicinity of m = 0 , such a problem is not self-similar but 

within the limit t ---) cu it tends asymptotically to a self-similar solution with an expo- 
nent , which corresponds in the case of dispersion, to the problem of a concentrated shock 
fl, 21. For the problem of symmetrical motion, the exponent is always equal to unity 

and is independent of the initial distribution with I > 1. 
For the case 1 < 1 , the problem has a self-similar solution for any exponent 2 Q 1. 

It should be noted that in the case of 1 = 1 , the same self-similar exponent is obtained 
as in the problem concerning a two-dimensional explosion [3]. The main attention is 
paid below to the case when 1 < 1. The results of the investigation are presented in the 
form of graphs. In certain cases, an exact analytical solution has been successfully found 
for the equations of self-similar motion. The assumption concerning the outcome in a 
self-similar solution for 1 > 1 is verified by numerical integration of the initial equa- 
tions in partial derivatives. 

1. Suppose we have an ideal gas with equations of state 

p = RpT, a = Pk - l)P (1.1) 

I$ here p is the density, T the temperature, p the pressure and e the internal energy ; 
R and y are the gas constants. For t = 0 the gas is at rest, 

U (0, m) = 0 (1.2) 

the initial density is constant, p = P,,, and the pressure is given by the power law 

p (0, m) = porn-’ (4 p. = const > 0) (1.3) 
where m is the mass coordinate. We shall examine the problems of: 

dispersion, when for t = 0 the gas is contiguous with a vacuum 

n = 0, p (0, 4 = 0 (1.4) 

and symmetrical motion with center at the point m = 0 

m = 0, u (0, t) = 0 (1.5) 

The motion of the gas is described in Lagrangian coordinates by the system 

a 2 au ----= 
at P am 0, +++ = 0, -++p+$ -0 (1.6) 

The conditions in the shock wave have the form 

13 



14 V. E. Neuvazhaev 

Pl (D - 4 = PO (D - Uof7 Pl -I- Pl P - %>” = PO + PO P - uo? 
81 - Eo = +w PO) (-&-+;j (1.7) 

where D is the shock wave velocity, the subscript zero refers to the state ahead of the 

wave front and the subscript unity refers to the state behind the wave front. 

We introduce dimensionless functions by the formulas (2.8) 

p = (y - 1) fw~fq3$c (a), P = PO& (a), U = 1/Ay(r--l) M~+2)5 ((7”) 

Substitution of (1,8) and (1.9) into (1.6) and (1. ‘7) gives a system of ordinary differ- 

ential equations &A<’ -oh’ = 0, a+-a’= -+c 

--y5& + &I = --lad/a (1.10) 
with the following conditions in the shock wave 

61 (a - Er) = SfJ (a - Lo), J+n, 4 6, (a - 5J2 = I+no + 60 @ - COY 

n1 x0 
---= 

61 60 
~(zc~+ax~)(&t) (I Al) 

The latter equation of system (1.10) can be integrated [3] and we obtain 

8 = j&‘/~&h (l.lZ) 

where k is the constant of integration. using Eq. (1.l.2), we transform system (1.10) 

into the form 

, n.== -_&.” 
r ( $- +, + &7)/Y ~(7+1)/7 5 , ) 5’ = - + (++ -g) (6.13) 

r=u- kaU-W7~(7+1V7 

Following [4] we introduce the new variables n and 2 
Y-l-1 Y 2Y-t Y 

5 ==a zi-fIY+lz, .g I=: a?Tifluzi (1.14) 

System (1.13) then reduces to the following: 

&!!!.G=11 - (r + 2) - 1121 (y + 1) krrZ + (2 - i/r) krI 
da I- klI 

(1.15) 

Dividing one equation by the other, we obtain 

p] .L$--- 
- l/r + ‘1% (1 + 2) Z - kILZ + ‘/&kIM2 

- (I + 2) - l/,1 (r + 1) kIIZ + (Z--E/7) kI-I 
(l.l(i) 

2, In the case of dispersion of the gas into a vacuum, the structure of the solution 

will be as follows : for t > 0 the whole mass of gas is attributed to the motion, except 
for a point at infinH,y where, naturally, we set 

U(co, t) =o (2.1) 
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The gas-vacuum boundary moves into the vacuum with infinite velocity. A shock 

wave arises in the gas which propagates through a perturbed background. 
Let us set the boundary conditions for Eq, (1.16). First of all, we consider the condi- 

tions at infiniry (2.1). We note that 

p = p,m-‘c&c (a), u 5 (“IpJhm- ‘lr~~v2~ 5 (a> (2.2) 

follows from Eqs. (1.8) and (1.9). 
Hence, with a fixed value of m and t -* 0 , the initial conditions (1.2) and (1.3) 

should be valid ; therefore 

a-too, a”oEC (CL) --* 0, &s (a) + 1 (2.3) 
From (1.14) we obtain 

J&+s 3 1 for a -f CO (2.4) 
We shall show that the point 

rI 0, = z - 2141+ 2)y (2.5) 
must correspond to conditions at infinity. 

On the basis of (2.4). the boundary condition for (1.16) lies on the coordinate axis 

I7 = 0, but as the axis n = 0 is the solution of Eq. (1.16). it cannot be the required 

solution and then the starting point will be singular;i. e. the solution intersects the 
straight line n = 0. Equation (2.5) and the point 

n 0, = e==oo (2.6) 

will be singular points belonging to the axis n = 0. 

The latter cannot be the starting point. It is clear from physical co~ideratio~, 
that in the vicinity of the point (2.6). the functions 11 and 2 are positive (cf. Eq. (1.8) 
and (1.14)). It is easy to show that Eq. (1.16) has an entire set of solutions for n > 0 
and 2 > 0 , emerging from the point (2.6) 

II = cz-s + . . . (2.7) 
where C is some constant, However, in this case we have 

f = C,a-“lil -j- . . , 

in the vicinity of the point being considered. 

This contradicts the condition ca- %f + 0 for a -+ CO from Eq. (2.3). Therefore, 

the unique point (2.5) corresponds to the conditions at infinity in the variables n and 

2 . It has the nature of a saddle and the required solution has the following expansion: 

w3) 
3. We shall consider condition (1.4) at the gas-vacuum boundary and we shall show 

that in the variables n and Z , a singular point with the coordinates 

n, = 0, zO=--oo 
corresponds to this condition. 

(3.1) 

We shall find also the expansion of the solution in the vicinity of (3.1). 
Let us suppose that IT,, and 2, are finite values for a = 0. The equations for deter- 

mining & and &, follow then from (1.14) and (1.13) 
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Solving the latter, we have 

For the point B with 1 - 2~ (0 we obtain Zo> 0, and therefore this point must 

be discarded, as it follows from (1.14) that &, < 0 for cc = 0. 
The point A, just as point B, is singular for Eq. (1.16). Its character of singularity is 

a saddle. The separatrixes of the saddle have the expansions 

JI = +,h,(Z+$j+ . . . , n=$-th,jz++j+... (3.2) 

Substituting (3‘2) into (1.15). we obtain 

l-i = (I + 2)lna + C (3.3) 

This contradicts the assumption that I& is finite, Consequently, the point d also should 
be discarded. There remains-the unique point (3. X), which, in fact, corresponds to the 

gas-vacuum boundary. The expansion of the solution in its vicinity has the form 

TI---_ -2$+-i . . . . 2 =2: &4’/z(~+2)(1-Y) -t . . . (3.4) 

5 z c(-%I) n 5 ($/r(1+2)Y-1 (3.5) 

A further set of integral curves (2.7) results from (3.1). for which rt - a-l; this how- 
ever, for I?> 0 , contradicts the boundary condition (I. 4). Therefore, the unknown solu- 

tion is represented by the expansion (3.4). It can be seen from (3.5) that the gas flows 

out with infinite velocity. The behavior of the integral curves in the vicinity of (3.1) 

is shown in Fig. 1. 

Fig. 1 Fig, 2 

4, We shall describe the method for the construction of the solution. From the fore- 
going, the solution must lie in the upper half-plane of Il > 0 (Fig. 2) and it must pass 

through the singular points C and E. It is obvious that in moving along the curve CD 

from point C to point D , the parameter a must decrease. However, this will occur so 
long as II< k-1. Consequently, it is not possible to construct a continuous solution and 
it is necessary to use the conditions in the shock wave (1.11) in order to arrive at 
point E , starting from point C . From the conditions in the shock wave we have 21 > 0 
and therefore the solution further must pass through the singular point A. 

The constant k occurring in Eq. (1.16) will be different for different sides of the dis- 
continuity. It follows from condition (2.3) that ahead of the shock wave front ko =: 1. 
Further construction of the solution consists in choosing the location of the shock wave 
front, defined by the value of a. The latter must be selected so that the point (Ill, 2,) 
obtained from (1. X4) and from the conditions in the shock wave (1.11) and (1.12)should 
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lie on the separatrix DA. The five unknowns a, I& I%, x1 and k,, generally speaking, are 
defined from the three conditions (1.11). relation (1.12) and the condition for passage 

of the integral curve through the singular point A. 

Numerical integration of Eq. (1.16) is carried out over the interval 0 < II < l,and at 
the point (2.5) the expansion (2.8) is used. When the function 2 = 2 (II) is defined, the 

solution of the first equation of system (1.15) is found in the interval a, < a < 00 , taking 
account that the point (cc = 03, II = 0) is singular and the unknown integral curve has 

the asymptotics (2.4). Then, by formulas (1.11),(1.18) and (1.14) we compute succes- 

The curve II, (2,) obtained should intersect the separatrix EAD, also defined numer- 
ically, for a certain value of the parameter al. 

6, Let us consider the case 1 > I. We note that intersection is not always possible. 

This implies that the formulation of the prob- 
lem does not have a self-similar solution. We 

shall prove this for I = 2 and y = 1.5. 
In the particular case when 1 = 2 (y - 1) I 

/ (2 - y) , the separatrix DA can be defined 
analytically 

n= ;.1/(2--)/y-(~ - 1)Z (5.1) 

The integral curve CD for I = 2 will be the 

straight line 2=1/r. For t=2 and y=1.5 we 

have a = (1 -j- */r IIo)%~B-‘/~ 

By formula (4.1) we obtain a certain curve 

Fig. 3 
A = _rtl%a-X - 6ik (3 - Za&x-~/~) 

which is plotted in Fig. 3. It can be seen from 
the graph that it does not intersect the axis A = 0 and, therefore, for y = 1.5 and I =‘2, 

there is no self-similar solution for the problem being considered. 
In order to explain the physical essence of the solution obtained in this case, we deter- 

mine the total energy of the system at t = 0 
mI-’ w 

E O = (y -2, po -I=7 I 
(5.2) 

iI 

We find that it is infinite; the integral diverges at the point m = 0 for I > 1 and at 
m = w for I < 1. We also infer that if I > 1, then a finite gas mass has infinite energy 
for some fixed mo. while a gas of infinite mass (m > mo) has finite energy. In this case 
an infinite amount of energy is concentrated at the boundary between the gas and a 

vacuum. If we assume that this energy is finite, e. g. by setting 

p = PO”‘*-r (m \< mo), p = porn+ (m > m0) (5.3) 
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then the problem is no longer self-similar. The self-similar solution onto which the 
problem will emerge is not readily apparent in advance. It might be some solution of 

system of ordinary equations (1.15). But, as we showed in the case y = 1.5, I = 2, such 
a solution does not exist. Numerical calculations by a difference procedure I.51 carried 

out for initial partial differential equations (1.6) indicate a fairly rapid emergence onto 
a self-similar solution with an exponent equal to that of the concentrated shock problem 

PI* 
The dependence of the coordinate of the shock wave front on time is plotted in Fig. 4 

for y = 1.4 and 2 = 2. The solid line denotes the wave front in the self-similar prob- 

lem of concentrated shock through a cold gas (I = 4/s, see 163). and the points refer to 
the results of numerical integration of the non-self-similar problem with (5.3) for 1 == :! 
and Y = 1.4. 8 

Log t -F- I ’ x 

4 I ,___1 I-- __ .._-.L 

2.4 
5 

0.0 

0.2 
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-0.6 

-1.0 

Fig. 4 Fig. 5 

0, The case 1 < 1. The problem is self-similar for this distribution of the initial 
pressure. Curve 8 in Fig, 3 intersects the axis A = 0. The method for constructing the 

solution is shown in Sect. 3. 
With 1 = 2(y - 1) / (2 - y) , the solution behind the shock wave front can be written 

in the finite form % 31;=---CY 
a1 ' 

6 zzz kl (?$l/ap~ &2-y) (6.1) 

5 = (nl/u*)- “’ 
1 

(1 _ T) kl 
u(Y-lMY-2) + _& 2$ 

The solution ahead of the front is obtained as a result of numerical integration of 
Eqs, (1.15) and (1.16). It is shown for y = 1.2 and I = 0.5 in Fig, 5. At the shock wave 
front, the corresponding parameters of the problem have been obtained as 

CQ = 1.56, 6, = 1.09, 61 = 2.19, xg = 0.892 
fir = 2.08, 5” = 0.213, c1 = 0.886, kl = 0.988 

It can be seen from Fig. 5 that the maximum values of the density, velocity and pres- 
sure are achieved at the shock wave front. The compression in the shock wave is found 

to be signi~cantly below the limiting value, which is equal to 11 for y I= 1.2. 

7. Let us consider the symmetrical motion of a gas. This problem admits generaliza- 
tion in cylindrical and spherical geometry. We shall investigate the point corresponding 

to the plane of symmetry m = 0. The boundary condition (1.5) assumes the form 
a = 0, <=O (7.1) 
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If we assume that the pressure in the plane of symmetry is nonvanis~ng, it follows 
from Eq. (1.14) that 

Z=-$, Z(a= 0) = 0 (7.2) 

and, likewise, when 2y - 1> 0 

lI (a = 0) = 00 (7.3) 
Therefore, in the plane nz ; the point 

z = 0, 1I=oO (7.4) 
corresponds to the boundary condition, 

This singular point is a node. It can be shown 
that the required solution is a curve intersec- 
ting a set of integral curves at the singular 
point. The expansion of the solution for E < y 

Fig. 6 has the form 
fl = l/k (y - I) l/Z + . . . (7.5) 

As.in the case of the dispersion problem, the solution here can be constructed for 
1< 1. If I = 1, then behind the shock wave the solution is written in finite form, as 
the curve n = 2/k (y - 1)Z (2 - yZ) (7.6) 

is the solution (1.16). Knowing (7.6). Eq. (1.15) can be integrated. For 1> 1, there is 
no solution for the self-similar problem. If, however, the normal pressure disuibu~oR 
(5.3) is taken as the initial d~~ibution for I> f , this problem emerges as a self-similar 
solution for t -+ 00, corresponding to the two-dimensional explosion problem [3] with the 
self-similarity exponent 1 = 1. Fig. 6 shows the solution for y = $ .4 and 1 = 9.5. 
A shock wave is propagated through the perturbed background and the maximum values 
of velocity, density and pressure are attained in it. In the case when m = 0, the pressure 
is finite and the density is equal to zero. 

The author thanks R, A, zhilin and M. P. Bronnikov for contributing assistance in the 
numerical integration of equations (1.15) and (1.16). 
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